Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Wind turbines operate in the atmospheric boundary layer (ABL), where Coriolis effects are present. As wind turbines with larger rotor diameters are deployed, the wake structures that they create in the ABL also increase in length. Contemporary utility-scale wind turbines operate at rotor diameter-based Rossby numbers, the non-dimensional ratio between inertial and Coriolis forces, of$$\mathcal {O}(100)$$where Coriolis effects become increasingly relevant. Coriolis forces provide a direct forcing on the wake, but also affect the ABL base flow, which indirectly influences wake evolution. These effects may constructively or destructively interfere because both the magnitude and sign of the direct and indirect Coriolis effects depend on the Rossby number, turbulence and buoyancy effects in the ABL. Using large eddy simulations, we investigate wake evolution over a wide range of Rossby numbers relevant to offshore wind turbines. Through an analysis of the streamwise and lateral momentum budgets, we show that Coriolis effects have a small impact on the wake recovery rate, but Coriolis effects induce significant wake deflections which can be parsed into two regimes. For high Rossby numbers (weak Coriolis forcing), wakes deflect clockwise in the northern hemisphere. By contrast, for low Rossby numbers (strong Coriolis forcing), wakes deflect anti-clockwise. Decreasing the Rossby number results in increasingly anti-clockwise wake deflections. The transition point between clockwise and anti-clockwise deflection depends on the direct Coriolis forcing, pressure gradients and turbulent fluxes in the wake. At a Rossby number of 125, Coriolis deflections are comparable to wake deflections induced by$${\sim} 20^{\circ }$$of yaw misalignment.more » « lessFree, publicly-accessible full text available April 10, 2026
-
Combined wake steering and induction control is a promising strategy for increasing collective wind farm power production over standard turbine control. However, computationally efficient models for predicting optimal control set points still need to be tested against high-fidelity simulations, particularly in regimes of high rotor thrust. In this study, large eddy simulations (LES) are used to investigate a two-turbine array using actuator disk modeling in conventionally neutral atmospheric conditions. The thrust coefficient and yaw-misalignment angle are independently prescribed to the upwind turbine in each simulation while downwind turbine operation is fixed. Analyzing the LES velocity fields shows that near-wake length decreases and wake recovery rate increases with increasing thrust. We model the wake behavior with a physics-based near-wake and induction model coupled with a Gaussian far-wake model. The near-wake model predicts the turbine thrust and power depending on the wake steering and induction control set point. The initial wake velocities predicted by the near-wake model are validated against LES data, and a calibrated far-wake model is used to estimate the power maximizing control set point and power gain. Both model-predicted and LES optimal set points exhibit increases in yaw angle and thrust coefficient for the leading turbine relative to standard control. The model-optimal set point predicts a power gain of 18.1% while the LES optimal set point results in a power gain of 20.7%. In contrast, using a tuned cosine model for the power-yaw relationship results in a set point with a lower magnitude of yaw, a thrust coefficient lower than in standard control, and predicts a power gain of 13.7%. Using the physics-based, model-predicted set points in LES results in a power within 1.5% of optimal, showing potential for joint yaw-induction control as a method for predictably increasing wind farm power output.more » « less
-
Abstract The spanwise undulated cylinder geometry inspired by seal whiskers has been shown to alter shedding frequency and reduce fluid forces significantly compared to smooth cylindrical geometry. Prior research has parameterized the whisker-inspired geometry and demonstrated the relevance of geometric variations on force reduction properties. Among the geometric parameters, undulation wavelength was identified as a significant contributor to forcing changes. To analyze the effect of undulation wavelength, a thorough investigation isolating changes in wavelength is performed to expand upon previous research that parameterized whisker-inspired geometry and the relevance of geometric variations on the force reduction properties. A set of five whisker-inspired models of varying wavelength are computationally simulated at a Reynolds number of 250 and compared with an equivalent aspect ratio smooth elliptical cylinder. Above a critical non-dimensional value, the undulation wavelength reduces the amplitude and frequency of vortex shedding accompanied by a reduction in oscillating lift force. Frequency shedding is tied to the creation of wavelength-dependent vortex structures which vary across the whisker span. These vortices produce distinct shedding modes in which the frequency and phase of downstream structures interact to decrease the oscillating lift forces on the whisker model with particular effectiveness around the wavelength values typically found in nature. The culmination of these location-based modes produces a complex and spanwise-dependent lift frequency spectra at those wavelengths exhibiting maximum force reduction. Understanding the mechanisms of unsteady force reduction and the relationship between undulation wavelength and frequency spectra is critical for the application of this geometry to vibration tuning and passive flow control for vortex-induced vibration (VIV) reduction.more » « less
An official website of the United States government
